Subpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based Films1
نویسندگان
چکیده
Advancements in microfabrication techniques and thin film growth have led to complex integrated photonic devices. The performance of these devices relies upon precise control of the band gap and absorption mechanisms in the thin film structures, as well as a fundamental understanding of the photoexcited carrier thermalization and relaxation processes. Using a pumpprobe technique, it is possible to monitor the transient thermalization and relaxation of hot electrons and holes on a sub-picosecond time scale. This method relies upon the generation of hot carriers by the absorption of an intense ultrashort laser pulse (∼135 fs). Transient changes in reflectance due to the pump pulse excitation are monitored using a weaker probe pulse. Control of the relative time delay between the pump and probe pulses allows for temporal measurements with resolution limited only by the pulse width. The transient change in reflectance is the result of the transient change in the electron and hole distributions. Observation of the reflectance response of InP films on a subpicosecond timescale allows for detailed examination of thermalization and relaxation processes of the excited carriers. Longer timescales (>100 ps) are useful for correlating the transient reflectance response to slower processes such as thermal conduction and recombination. A description of this technique and results for several InP-based films are presented.
منابع مشابه
Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.
Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measu...
متن کاملab initio study of hot carriers in the first picosecond after sunlight absorption in silicon.
Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semicondu...
متن کاملPhotoexcited Carrier Lifetime and Refractive Nonlinearity in Direct and Indirect Band Gap Crystals on the Z-Scan Technique
The Photoexcited carrier lifetime (τ) and peak to valley transmission difference (ΔTp-v) in direct and indirect band gap crystals has been investigated by the use of single beam open and closed aperture z-scan technique using frequency doubled Nd:YAG laser. The peak to valley transmission difference (ΔTp-v) is found to be of the order of 10-2 in case of direct band gap crystals and of the order...
متن کاملDesign of a new asymmetric waveguide in InP-Based multi-quantum well laser
Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...
متن کاملEnergy Balance and Gas Thermalization in a High Power Microwave Discharge in Mixtures
The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , diss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005